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1. Introduction 

In 1967, Merzhanov, Skhiro, and Borovinskaya published the first comprehensive paper 
describing the self-sustaining character of reactions in a condensed phase, which could be 
utilized for synthesis of many ceramic and intermetallic materials (1).  In this paper, the authors 
demonstrated the principle of so called “solid flame” using reactions between transition metals 
and boron, carbon, or nitrogen.  The world-wide combustion synthesis community considers this 
a comprehensive paper and subsequent integrated experimental and theoretical research effort 
conducted in the former Soviet Union as the beginning of a new approach and method of 
synthesizing advanced high temperature materials.  The main research was conducted by many 
Russian scientists in the Branch of Russian Academy of Sciences in Chernogolovka under the 
leadership of Professors Merzhanov and Borovinskaya (2–11).   

During that period of our history, free exchange of information among scientists from different 
countries was very limited due to the cold war.  The main source of information on research 
discoveries and accomplishments of Russian scientists available to U.S. and other researchers 
was through publications in Russian journals or their translated versions.  Journals of 
Combustion, Explosion, and Shock Waves, Doklady Academy Nauk SSSR, Soviet Powder 
Metallurgy Metals and Ceramics, Inorganic Materials, and Doklady Physical Chemistry were the 
most searched journals in the area of combustion synthesis.  In the early 1990s, a new 
International Journal of Self-propagating High-temperature Synthesis was created and has been 
published quarterly since its inception.   

Self-propagating high-temperature synthesis (SHS), also called combustion synthesis (CS), is the 
exothermic process in which the reaction between two or more solid reactants or gas and 
condensed reactants takes place in a self-sustaining regime leading to the formation of solid 
products of a higher value (12–14).  During the past forty years, hundreds of different 
compounds, including, nitrides, borides, carbides, silicides, sulfides, phosphides, hydrides, and 
oxides of many elements as well as intermetallics, composites, nonstoichiometric compounds, 
and solid solutions were successfully synthesized by this method (12–18).  Some materials have 
been successfully scaled-up and produced by industry.  To this group of materials, among others, 
belong:  carbides of titanium, zirconium, tungsten, tantalum, boron and silicon, titanium 
diboride, molybdenum disilicide, aluminum nitride, silicon nitride, nickel aluminides, titanium 
nickelide, zirconium aluminides, and number of composites (e.g., TiC-TiB2 and SiC-Si3N4) or 
solid solutions such as SIALONs and aluminum oxynitride (AlON).   
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2. Review of Early Research in the United States and Western Countries 

An historical perspective on research in the area of exothermic reactions occurring in a self-
sustaining regime was well documented by Hlavacek (19) and McCauley (16).  In the United 
States, the first reported research utilizing self-sustaining character of condensed-phase reactions 
was conducted by Walton and Poulos (20) in the mid and late 1950s.  These authors explored 
thermite reactions to make refractory coatings.  Mixtures of aluminum and/or magnesium with 
oxides of iron, cobalt, and vanadium were used to produce different cermets.  The authors also 
explored the combustion synthesis of silicides, borides, and carbides.  The use of beryllium as a 
reducing agent and reduction of uranium oxide were discussed.  Several other researchers made 
attempts to synthesize other materials like aluminum phosphide by direct reaction between red 
phosphorous and aluminum powders (21), tantalum metal by reduction of K2TaF7 by sodium 
(22), the formation of molybdenum disilicide by direct reaction between molybdenum and 
silicon powders (23).  In 1964, Krapf (24) patented the chemical hot press in which a mixture of 
reactive powders was heated in a die by passing an electric current.  After initiation of 
exothermic reaction, the product was pressed by an uniaxial force.  The concept of pressing hot 
products generated in strongly exothermic reaction was also described in 1967 by Stringer and 
Williams (25).  According to these authors, reaction pressing can be applied to intermetallic and 
metal-metalloid compounds generated by fast evolution of energy due to a chemical reaction 
between reactant powders.  They claimed that the exothermic effect of reaction in many cases is 
sufficient to form a plastic product mass, which can be quickly formed to different shapes.  The 
authors emphasized the use of aluminides, berrilides, titanides, zirconides, and borides.  In 1968, 
McKenna (26) patented a process of preparing tungsten monocarbide utilizing exothermic effect 
generated during the reaction between elemental powders.  In 1973, Hardt and Phung (27) 
published a very important paper on propagation of gasless reactions in solids, which further 
alerted U.S. scientists about importance of the combustion synthesis. 

 

3. Combustion Synthesis Research in the United States After 1980 

After sporadic activities in the Western World in the 1950s and 1960s, a more significant 
research effort was made in the United States starting in the early 1980s.  In 1982, McCauley et 
al. (28, 29) and Holt and Kingman (30) published new results in the area of combustion 
synthesis, which generated interest at several universities and U.S. government laboratories.  The 
review paper on the SHS activities in the Soviet Union written by Crider (31) also stimulated the 
new interest.  The work of McCauley et al. (32) was initiated from comprehensive investigation 
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of burning characteristics of zirconium metal with air and barium chromate for the potential use 
of this reacting system in thermal batteries (16, 32).  The basic schematics of a thermal battery 
and key gasless and gas-solid SHS reactions are shown in figure 1. 

 

 

Figure 1.  Use of zirconium in thermal batteries (16). 

 
Following this work on zirconium burning characteristics (32), McCauley and his co-workers 
(28–29, 32–37) shifted their activities from using by-products of SHS to processing, focusing  on 
the following:  (i) utilize reaction sintering concepts without pressure; (ii) importance of physical 
and chemical characteristics of powders; (iii) focus on phase equilibrium; and (iv) detailed 
characterization of final sintered products. 

Critical issues in reaction sintering are as follows: 

• Chemical driving forces much higher than conventional sintering, 

• If gas forms most diffuse out, 

• Volume fractions of reactants and products change with time,  

• Kirkendall effects: porosity formation due to density change between reactants and 
products, 

• Wetting between liquids and solid phases becomes important, and 

• Grain size reduction from reactants – nucleate new phases. 

A pioneering work of Holt and Kingman (30) was mainly focused on combustion synthesis of 
ceramic powders and refractory materials in general, which was more aligned with the research 
activities conducted in the former Soviet Union’s laboratories.
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A turning point in the U.S. efforts in SHS was catalyzed by a major contract from the Defense 
Advanced Research Projects Agency (DARPA) that was carried out from 1984 to 1986.  The 
overall contract manager was J. W. McCauley and the program manager was J. Birch Holt at the 
Lawrence Livermore National Laboratory with sub-contracts at The University of California, 
Davis, Ceramatec, Los Alamos National Laboratory, and Rice University. 

The key universities, which started research in combustion synthesis in the early 1980s included:  
University of California at Davis, Georgia Institute of Technology, State University of New 
York at Buffalo, and Northwestern University.  These early research activities were supported by 
the National Science Foundation, Department of Energy (Los Alamos National Laboratory and 
Sandia National Laboratory), and U.S. Army.  Also, some research in the area of combustion 
synthesis was conducted in U.S. government laboratories, especially the Department of Energy, 
U.S. Army, and U.S. Navy.  In table 1, the summary of research activities in academia, 
government laboratories, and industry in the U.S. at the end of 1980s is presented. 

Table 1.  SHS R&D groups in the U.S. in late 1980s. 

Organization Principal Investigators Technology Focus 
Department of Defense 
Army Materials Technology Lab. 
Army Ballistic Research Lab. 
Army research Office 

 
Croft, Marzik, McCauley 
Niller, Kottke 
Crowson 

 
Powder characterization; sintering; phase equilibria 
Dynamic compaction; modeling 
Coordination and management 

Department of Energy 
Los Alamos National Laboratory 
Lawrence Livermore National Lab. 
Sandia National Laboratory 

 
Behrens 
Holt, Halverson, Chow 
Margolis 

 
High temp. chemistry; laser ignition; modeling 
SHS; bulk materials, models 
Modeling 

Academia 
Alfred University 
Oregon State University 
Washington State University 
University of California – Davis 
Northwestern University 
Georgia Tech Research Institute 
Rice University 
New Mexico Inst. of Mining & Tech. 
State University of NY – Buffalo 
University of California – San Diego 
University of Florida 
Colorado School of Mines 

 
Spriggs 
Kanury 
Wojcicki 
Munir 
Matkowsky 
Logan 
Margrave 
Thadani 
Hlavacek and Puszynski 
Meyers 
Clark and Dalton 
Moore 

 
Materials processing; reviews 
Modeling 
Materials processing; eutectics 
SHS; materials processing; fundamentals 
Mathematical analysis 
SHS; materials processing; thermites 
High temperature mass spectrometry 
Explosive compaction 
SHS; powders, mat’l processing; math, modeling 
Explosive compaction 
Microwave processing 
SHS, intermetallics 

Industry 
Research Triangle Institute 
CERAMETEC 
General Sciences Inc. 
System Planning Corp. 
Lockhead Corp. 
Corning Glass Works 
W.R. Grace 
Advanced Refractory Technologies 
Innovative Materials, Inc. 
Benchmark Structural Ceramics 
Powder Technologies, Inc. 
Synergetic Materials, Inc. 
Kiser Research, Inc. 

 
Mullins 
Cutler 
Zavistanos 
Frankhouser 
Hardt 
DeAngelis 
Rice 
Blakely 
Puszynski and Hlavacek 
Hida 
Logan 
Halverson 
Kiser 

 
Fibers and metal matrix composites 
SHS; powders; thermites 
SHS densification 
Reviews and analyses 
SHS, sintering; phase equilibria 
Reactive hot pressing 
Materials processing 
SHS powders; whiskers 
SHS, nitride, boride, and carbide ceramics; 
intermetallics 
SHS powders and whiskers 
SHS powders and bulk materials 
Advanced materials 
Soviet SHS technologies 
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Both theoretical and experimental efforts were undertaken to explain various phenomena of 
combustion synthesis.  Theoretical research describing combustion front stability and bifurcation 
analysis was done by Matkowsky from Northwestern University, and Margolis, Armstrong and 
Koszykowski from Lawrence Livermore National Laboratory.  Professor Matkowsky has 
published numerous theoretical papers on the subject of gasless and gas-solid reactions (38–52).  
His pioneering work with Margolis, Kaper, and Leaf on bifurcation on pulsating and spinning 
reactions in condensed two-phase combustion belongs to very fundamental classics of 
combustion synthesis (39).  His further analysis with Bayliss of two routes to chaos in condensed 
phase combustion as well as series of theoretical papers on filtration combustion with Booty and 
scientists from Chernogolovka, Russia made very significant contributions to better 
understanding of complex nonlinear phenomena in combustion synthesis.  Very accomplished 
mathematicians and theoreticians such as Shkadinsky, Shkadinskaya, Aldushin, and Volpert 
from Russia cooperated closely with Professor Matkowsky during the 1990s.  Dr. Volpert joined 
Northwestern University and he presently works there as a professor of applied mathematics.  
Professor Volpert published several papers with Professor Matkowsky on the theory of gasless 
reactions and various aspects of filtration combustion in porous structures with and without 
deformation.  He also contributed to better understanding of combustion in microgravity 
environments and mathematical modeling of frontal polymerization and understanding of wave 
propagation during free-radical polymerization with the gel effect (53–63). 

A parallel mathematical modeling effort was undertaken at the State University of New York at 
Buffalo under the leadership of Professor Hlavacek, who joined that university in 1981.  
Professor Hlavacek established a very active research group, which focused its research on both 
experimental studies and mathematical modeling of self-sustaining reactions and materials 
engineering aspects of combustion synthesis.  Due to the access to parallel computer processors 
in mid 1985, his research modeling team was able to simulate complex combustion patterns, 
including transition to chaos, breaking of symmetry, fingering effects, multiple spinning waves 
in two and three dimensions, as well as complex behavior of the combustion front during gas-
solid reactions (64–76).  Figure 2 shows the transition to chaos via period doubling in gasless 
reacting systems.  A typical sequence of spinning combustion waves in two dimensions is shown 
in figure 3.  It should be noted that these simulations were done using a very sophisticated 
adaptive mesh computer program, which allowed completing calculations on available 
supercomputers within a reasonable period of time.  This computer technology looks old today, 
but truly it was the state-of-the-art 20 years ago. 

In the 1990s, Professor Law from Princeton University published a number of papers describing 
model formulations, mathematical modeling of combustion front propagation and comparison of 
key combustion characteristics with experimental results (77–87).  Figure 4 shows comparison of 
experimental and theoretically predicted combustion limits for the Co-Ti system (82). 
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(a) (b)

(c) (d)

(e) (f)  
Figure 2.  Combustion front propagation velocity in gasless systems vs. time with different dimensionless 

activation energy and heat of reaction (74).
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Figure 3.  Two-dimensional modeling:  (a) single head spinning wave; (b) multiple 

head spinning waves (70). 

 

 
Figure 4.  Nonadiabatic combustion behavior for Co–

Ti system with stoichiometric mixture at 
T0 = 573 K. (a) Range of flammability as 
functions of 2r and R0; experimental data; 
(○) designates the steady propagation, (▽) 
the flame extinction during the propagation, 
and (× ) the non-ignition. (b) Burning 
velocity u0 as a function of 2r, with R0 
taken as a parameter; data points are 
experimental in the literature (82). 
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During the same period of time, other researchers from various universities also contributed to 
development of new reaction models and mathematical modeling of combustion synthesis 
processes.  Contributions by Professors He and Stangle (88), Kanury (89), Bhattacharya (90), 
and Varma (91) are also of very significant importance. 

The experimental research conducted in the U.S. national laboratories and universities resulted in 
many accomplishments, which led not only to significant contributions into the fields of physics, 
materials science, ceramic engineering, and reaction engineering but also to the development of 
several technologies, which resulted in their commercialization.   

In academia, Professor Munir, one of the key SHS leaders in the United States, has been involved 
in the area of combustion synthesis from the early 80s.  His research activities at University of 
California at Davis resulted in education of large number of excellent scientists who are working 
in many countries.  His selected major research contributions are listed next (92–105): 

• Combustions synthesis of refractory carbides, borides, silicides, nitrides and intermetallic 
compounds (1980s). 

• Analysis of the role of thermal migration in pore formation during SHS synthesis (1990). 

• Theoretical analysis of the stability of self-propagating combustion synthesis waves, 
concept of SHS diagrams (1990–1992).  

• Use of the Boddinton-Laye mathematical analysis for direct determination of kinetic 
parameters during SHS (1992). 

• Analysis of the origin of porosity in SHS products (1993).  

• The role of electric fields in SHS reactions:  Modeling and experimental work  
(1995–1998). 

• Separation of the thermal (Joule heat) from the intrinsic (electron wind effect) contributions 
of the field (current), work on electromigration has demonstrated field effect on point 
defect generation and mobility (2001). 

• Recent work on the combined mechanical and field activation to synthesize dense (bulk) 
nano-ceramics and nano-composites in one step (2001–present). 

• Use of field activation for simultaneous synthesis and consolidation of complex materials; 
Ti3SiC2 (1999), TiB2-WB2-CrB2 (2001), AlN-SiC (1996–2000). 

• Use of field activation for microalloying (2003–2004). 

• Use of field activation to prepare nanostructured functional oxides for fuel cell 
applications: Novel demonstration of power generation at room temperature by protonic 
conduction.
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The main advantage of the field-assisted process is the electrical discharge at particle contacts, 
which promote sintering.  Numerous materials, including TiN, TiO2, SiC, Si3N4-TiN, ZrO2-
Al2O3, and FeAl were sintered during the past several years resulting in the formation of dense 
articles with nanosize grains.  The starting powders were obtained by plasma, mechanical 
alloying, or sol-gel techniques. A very important modification of this field-assisted technique 
was presented by Munir (93).  It was demonstrated that the combination of field-assisted 
technique, such as SPS, and in-situ synthesis of materials from nanoreactants or mechanically-
activated powders may result in the formation of desired phase and consolidated products 
retaining nanostructure.  Experimental results did show that the presence of electrical field 
influences the mechanism and rate of the condensed phase reaction as well as the phase 
composition and elemental distribution in solid solutions.  The main effects of the electric field 
during the reaction have been attributed to Joule heating, enhanced mass transport by electron-
migration, and the formation of plasma on the particle level.  Therefore, the entire process of in-
situ densification of combustion synthesized bulk materials exhibiting a nanostructure can be 
divided into three steps:   

• Mechanical activation of participating reactants, 

• Cold compaction of pre-alloyed powders, and 

• Field-activated pressure-assisted synthesis. 

In the first step, reactant powders are mixed in a stoichiometric ratio and co-milled in a planetary 
mill in order to form nanocrystallites.  During the milling the particles are flattened, fractured, 
and welded.  This process of grain size reduction, generation of residual stresses, and phase 
transformation has a significant effect on the kinetics of combustion reactions during the final 
consolidation step in the presence of electrical field.   

The second step involves cold-compaction of mechanically activated powders into a graphite die.  
The final step includes simultaneous application of electric current and uniaxial pressure under 
an inert atmosphere.  In this step, the combustion reaction is initiated by Joule heating and the 
hot product is densified within a few minutes.  Relative densities between 90% and 100% of the 
theoretical density can be commonly achieved. 

It should be mentioned that Professor Munir has published many papers and obtained numerous 
patents for his innovations of combustion synthesis.  In this review, only few selected papers are 
mentioned (92–105).  He has also made very important contribution to the SHS community by 
reviewing articles on SHS for many journals, including the Ceramic Bulletin, and Materials 
Science Reports, which are cited by thousands and continue to be cited to the present.  Professor 
Munir has established among U.S. scientists the strongest collaboration with researchers around 
the world.  He has collaborated with Professors Frederic Bernard, University of Burgundy, Dijon, 
France; Manshi Ohyanagi, Ryukoku University, Seta, Japan; Umberto Anselmi-Tamburini, 
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University of Pavia, Italy; Giacomo Cao, University of Cagliari, Italy; Manfred Martin, University 
of Aachen, Germany; Rainer Telle, University of Aachen, Germany; In-Jin Shon, Chonbuk 
National University, Korea; Myeong-Woo Cho, Inha University, Korea; Roberto Tomasi, Sao 
Carlos Federal University, Brasil; Qing-sen Meng Taiyuan University of Technology, China; K. 
A. Khor, Nanyang Technological University, Singapore.; Z. Y. Fu, Wuhan University of 
Technology, China; and Yu. Maksimov, Tomsk University, Russia.  He has also ongoing 
collaboration with U.S. national laboratories, including collaboration with Dr. Alex Gash from 
Lawrence Livermore National Laboratory and Dr. John Neal from Oak Ridge National 
Laboratory.  Professor Munir has published many papers and he was awarded with numerous 
patents related to combustion synthesis.  In 1993, he established the American Consortium of 
Combustion Synthesis. 

The State University of New York at Buffalo (SUNY/Buffalo) was the second university 
strongly involved in combustion synthesis research.  As indicated before, Professor Hlavacek 
built a very large group of Ph.D. students and research scientists.  His integrated approach 
resulted in a strong development of combustion synthesis technologies supported by strong basic 
experimental research and mathematical modeling programs (106–117).  In the mid 1980s, 
Drs. Hlavacek and Puszynski successfully transferred the technology of synthesizing aluminum 
nitride by combustion synthesis technique into Advanced Refractory Technologies Company 
located in Buffalo, NY.  This company was the first to produce aluminum nitride by this 
technique.  In the late 1980s, other technologies for synthesis of silicon nitride, titanium 
carbonitride, α- and β-sialons, titanium carbide-titanium boride and silicon nitride-silicon 
carbide composites as well as tungsten carbide and aluminum phosphide were developed by 
Drs. Hlavacek and Puszynski.  The university spin-off company Ceramic Materials Processing, 
Inc. was involved in manufacturing of ceramic and intermetallic powders by the SHS method, 
scale-up of combustion reactors, and technology transfer.  During the 1980s and early 1990s, 
several researchers visited SUNY/Buffalo.  Dr. Puszynski joined Professor Hlavacek’s group in 
1982.  In 1991, Puszynski accepted a position at the South Dakota School of Mines and 
Technology where he has been continuing SHS-related work.  His research has been focused on 
combustion synthesis of nanopowders and nanocomposites as well as the reaction kinetics in 
systems consisting of nanosize reactants (118–126).  Professor Puszynski established close 
cooperation with Yerevan State University in Armenia, Academy of Mining and Metallurgy in 
Cracow, Poland and several U.S. national laboratories.  His recent work indicates that various 
intermetallic composites reinforced with single wall carbon nanotubes can be formed in a self-
sustaining regime with the ultimate grain structure being at the nanoscale (see figure 5).  His 
comprehensive work on combustion synthesis in the Si-Al-Ti-O-N-C system has led to the 
formation of many complex compounds with different morphologies and phase compositions.  
His work on chemically-assisted gas transport combustion synthesis led to successful synthesis 
of nanosize silicon carbide.  Figure 6 shows inert gas pressure regimes where silicon carbide can 
be formed.  Figure 7 shows different morphologies of silicon nitride formed with and without the 
presence of gas-transport promoting additives. 
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Figure 5.  (a) and (b) TEM images of Al and 

Ni nanoreactants, (c) reaction 
chamber, (d) SEM image of 
nanosize nickel aluminide-alumina 
composite prepared by 
simultaneous combustion synthesis 
and densification, (e) and (f) SEM 
images of single-walled carbon 
nanotubes reinforced nickel 
aluminide-alumina nanocomposites. 
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  (a)      (b)   

Figure 7.  SHS synthesized (a) β-Si3N4 and (b) α- Si3N4 (122). 

 
Professor Puszynski has been actively involved in the organization of technical sessions 
dedicated to combustion synthesis at various conferences, including the American Institute of 
Chemical Engineers and the American Ceramic Society.  Professor Puszynski also serves as a 
frequent reviewer of journal manuscripts.  He also serves as a consultant to Noveltec company in 
Tennessee, which is involved in production of variety products, including sialons, carbides, 
borides, nitrides, and sulphides by the SHS technique. 

Dr. Viljoen spent several years at SUNY/Buffalo in the late 1980s and early 1990s.  His work in 
the SHS area was focused on fundamental aspects of combustion reactions involving the solid 
state.  After accepting a professor position at the University of Nebraska he continued his 
fundamental work focusing on solid-solid reactions with mechanical coupling, understanding of 
solitons and non-equilibrium reactions in solid phases, combinatorial approach to surface 
contacts in solid-phase reactions, and analysis of the effect of heat transfer on combustion front 
propagation limits (127–131).  Professor Viljoen also contributed to a better understanding of 
strongly exothermic reactions taking place under strong compression.  He also cooperated with 
Russian scientists, including Dr. Shteinberg, and he supervised several Russian graduate students 
who joined his research group.   

Dr. Lis joined Professor Hlavacek’s research group in the late 1980s.  His research at 
SUNY/Buffalo was focused on combustion synthesis of silicon-nitride-silicon carbide 
composites and sialons.  He published jointly with Professor Hlavacek and his key staff several 
papers, which outlined key aspects of combustion synthesis, processing, and sintering of SHS 
synthesized materials.  After his return to Poland he continued building SHS related programs 
together with his former Ph.D. advisor, Professor Pampuch.  Later on, the group headed by 
Professors Pampuch and Lis became one of the most active European groups outside the former 
Soviet Union.
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It should be clearly noted that Professor Hlavacek educated many excellent Ph.D. students who 
are currently working in the industry or academia.  He also was the pioneer who introduced 
many chemical engineers into the field of combustion synthesis. 

In the late 1980s and early 1990s, several other U.S. universities got involved in combustion 
synthesis research.  In the early 1990s, Alfred University, under the leadership of Drs. Spriggs 
and McCauley, initiated a research program focusing on further development of SHS 
technologies.  With the strategic hiring of Dr. Stangle several R&D initiatives were conducted, 
including:  (1) fabrication of dense MoSi2 and MoSi2-based composites using SHS process; (2) 
combustion synthesis and fast-firing of nanocrystalline yttria-stabilized zirconia; (3) fabrication 
of functionally gradient materials by SHS method (see figure 8 [156, 157]); (4) development of a 
centrifugal-SHS process and analysis of its fabrication capabilities; (5) investigation of the 
mechanism and kinetics of combustion synthesis; and (6) study of the combustion synthesis 
process for materials fabrication.  This multi-year research program resulted in 31 publications 
and international recognition of an established research center (132–162).   

 

 

Figure 8.  Functionally-graded materials made by SHS 
(156, 157). 

 
In addition, the Alfred group established several international collaborations:   

• Interactions and formal agreement with NRIM, Japan (Kaieda), 

• Formal agreement with the Institute of Materials Science, School of Mining and 
Metallurgy, Poland (Pampuch), and 

• Interactions and formal agreement with ISMAN (Merzhanov and Borovinskaya). 

At approximately the same time period, Professor Varma initiated combustion synthesis research 
at Notre Dame University.  His initial research interest was focused on mathematical modeling 
of combustion fronts.  However, very quickly his research evolved toward experimental 
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investigation of reaction kinetics of heterogeneous reactions as well as understanding of system 
heterogeneity and melting effects on propagation of combustion fronts in the condensed phase  
(163–177).  Professor Varma invited a few Russian scientists, including Drs. Mukasyan and 
Rogachev to work with him at Notre Dame University.  He also attracted several graduate 
students, including some from Russia.  Dr. Mukasyan was offered a permanent position at this 
university and he is still working there conducting his own research program in the area of 
combustion synthesis.  A few years ago, Professor Varma accepted a new challenging position at 
Purdue University where he continues research in the area of strongly exothermic noncatalytic 
reactions.  Both Professors Varma and Mukasyan, when working together at Notre Dame 
University, conducted combustion synthesis research in a microgravity environment.  They also 
investigated possibilities of synthesizing biomaterial using the SHS technique.  They also 
initiated work on combustion solution of oxide nanomaterials for development of catalysts.   

Presently, Professor Mukasyan is actively continuing that research.  A variation of the 
combustion synthesis process, namely utilization of exothermic redox reactions in solutions, was 
already investigated by several researchers in India and the U.S.  Professor Bhaduri was among 
the first who explored this technique in the U.S. (178–182).  This type of the reaction is called 
solution combustion synthesis (SCS) and involves a self-sustaining reaction between metal 
nitrates and carbonaceous fuels, such as urea, glycine, or carbohydrazide.  The reaction between 
such fuel and oxygen containing species results in a significant heat generation.  In practice, this 
process is accomplished by dissolution of metal nitrates and uniform mixing of the fuel and 
nitrates in water, preheating of the oxidizer-fuel solution with subsequent water vaporization, 
followed by self-ignition of the dry reactants.  As a result, the formation of crystalline oxide 
nanopowders with tailored compositions can be formed.  The main advantage of this approach is 
mixing of reactants at the molecular level.  The overall reaction process is very fast and results in 
the formation of nanograins exhibiting a high purity due to vaporization of all volatile species at 
high reaction temperatures generated by this exothermic reaction.  Another important advantage 
of this method is a possibility of the formation of complex oxide nanopowders for different 
applications as structural ceramics, catalysts, bio-or fuel cell materials (183–188).   

The combustion synthesis research at Colorado School of Mines has been carried out by 
Professor Moore for almost 20 years.  Professor Moore’s research interest has been on the 
formation of composite materials at normal or reduced gravity environments.  The recent 
research interest of Professor Moore is focused on the formation of biomaterials (189–192).  
Professor Moore is very actively involved in numerous professional societies and his published 
contributions into the field of SHS are highly regarded by the international SHS community. 

A significant research effort in the U.S. was focused on simultaneous combustion synthesis and 
hot pressing.  Professor Logan from Georgia Institute of Technology established an experimental 
program focusing on densification of titanium diboride and various composites generated during 
aluminum thermal reduction of oxides (193).  Professor Logan developed a strong cooperation 
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with the R&D group led by Dr. Niiler from U.S. Army Ballistics Laboratory and McCauley of 
the U.S. Army Materials Technology Laboratory.  Niiler and his co-workers were involved in 
shock densification of combustion synthesized materials by means of explosives (194, 195).   

Shock-induced densification of ceramics and cermets by unique high speed forging was 
conducted by Professor Meyers and his research group at University of San Diego, CA  
(196–211).  Professor Meyers contributed to elucidation of the reaction mechanism at the front in 
Ti-C system.  This work was done with Dr. La Salvia from the U.S. Army Research Laboratory 
and produced some outstanding results describing the physicochemical mechanism of that 
reaction (199, 200).  Professor Meyers also contributed to fundamental understanding of 
densification by quasi-isostatic pressing (QIP) of reaction products.  This work was done in 
collaboration with Professor Olevsky (210, 211).  The use of a granular pressure transmitting 
medium, initially introduced at Chernogolovka, was used to produce TiC plates with dimensions 
of 12 × 12 × 2 in.  Production and densification of TiC-NiTi cermets was another 
accomplishment of this technology.  Figure 9 shows a typical microstructure of TiC-25%Ni 
composite material formed by SHS dynamically densified material.  

Professor Meyers collaborated with Dr. Kim, South Korea, Professor Meyer, Chemnitz 
University, Germany, Dr. Ramas Raman from Ceracon, Professor Olevsky, San Diego State 
University, and Dr. Jamet from Ecole Centrale de, France.   

 

 

Figure 9.  Microstructure of in-situ densified TiC-25%Ni composite 
formed during combustion synthesis and obtained in 
Professor Meyers’ laboratory.
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A significant contribution into the area of shock densification of combustion synthesized 
intermetallics and ceramic materials was also made by Professor Thadani (212–217). 

Recently, Professor Luss and his co-workers developed a novel efficient synthesis method called 
Carbon Combustion Synthesis of Oxides (CCSO) for production of advanced nano and 
submicron complex oxides such as ferroelectrics (BaTiO3, SrTiO3), hard and soft magnetic 
materials (Ba, Sr, Pb Mn-Zn and Ni-Zn ferrites), superconductors (Y123), optoelectronics 
(ZnSnO), solid-oxide fuel cell components (LaGaO3), battery electrodes (LiMn2O4), catalysts, 
membranes, and digital pigments (218–221).  The method is a modification of SHS that uses 
carbon as the heat generating fuel instead of a pure metal.  The concentration of the carbon in the 
reactant mixture enables control of the moving front temperature and average temperature front 
velocity as well as the products particle size and surface area.  CCSO may be used to produce 
oxides even when SHS cannot be applied, such as when the pure metal is pyrophoric (such as Li 
or La) or that it melts at room temperature (for example, Ga), or when the metal heat of 
combustion is relatively low.  In contrast to the common SHS, the combustion product (carbon 
dioxide) is not incorporated into the product and exits from the sample.  Moreover, the 
lubricating properties of the carbon enhance the mixing by ball milling.  The high rate of CO2 

release increases the porosity of the particles and the friability of the powder.  The process is 
significantly faster than common calcinations processes and produces powders with smaller 
particle size.  

Another interesting activity conducted by this group is focused on spontaneous magnetization 
generated by solid state combustion (222–228).  Using a highly sensitive high-Tc 
superconducting quantum interference device (SQUID), they were able to conduct the first 
measurement of the very low intensity (order of nT) transient magnetic field formed by a 
combustion front motion.  The front propagation generated a slowly oscillating magnetic field on 
which, in some cases, high frequency small oscillations were superimposed.  The magnetic 
power spectra of the oscillations scaled as a power law, suggesting that they are associated with a 
stochastic process.  The combustion synthesis of ferrites generated qualitatively different 
magnetic fields under different modes of combustion front motion, i.e., planar, spin, and 
pulsating.  The average magnetization vector generated by either planar or pulsating combustion 
was oriented at a smaller angle with respect to the pellet axis (φ ≤ 45°) than those generated by 
spin combustion (60° φ≤ ≤ 80°).  The Earth’s magnetic field had no impact on the spontaneous 
magnetization field of the samples.  Dr. Luss’ research group also developed a simple 
electromagnetic model which predicted the qualitative features observed in the experiments.  The 
transient evolution of this field depends on whether the combustion temperature exceeds or does 
not exceed the Curie temperature. 
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Figure 10 shows a case in which a residual magnetic field of about 4 μT was generated by the 
spontaneous magnetization of the ferromagnetic product PbFe12O19 in the post-combustion zone.  
The characteristic spontaneous magnetic field saturation time of about 250 s was much longer 
than the 1–2 s duration of the electrical signal.  The magnetic field was created by three different 
mechanisms:  (1) orientation of the magnetic dipole moments by internal electrical field force, 
(2) dipole self-orientation along existing residual field of the bulk material during the cooling, 
and (3) via chemisorption of O2 molecules on the ferromagnetic surface. 
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Figure 10.  Three temporal combustion temperatures in the top (T1), 
middle (T2), and bottom (T3) of the sample and the 
spontaneous magnetic field measured near the one side of the 
sample during the combustion synthesis of ferrite.  The 
distance between surface and sensor was 10 mm (226). 

 
During the past several years, another interesting technology was developed by Dr. Weihs from 
John Hopkins University (229–231).  Multilayer reactive foils provide ideal sample geometries 
for studying different SHS reactions with a high level of contact between reactants.  In addition, 
the thickness of each layer can be precisely adjusted.  Currently, his technology is used by 
Reactive NanoTechnologies, Inc., in Baltimore, MD for bonding dissimilar materials and in 
other applications.  
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4. Summary 

This review clearly indicated that the contribution of U.S. scientists to both theoretical 
understanding of combustion reactions in condensed phase and development of new innovative 
technologies based on the principle of self-propagating reactions between solid reactants or those 
involving solid and gas interactions is significant.  Despite the relatively small number of 
researchers involved in this field, the number of publications, patents, as well as technological 
know-how development is quite impressive.   

More than 40 years have passed since the discovery of SHS in 1967.  It should be emphasized 
that, during the last 17 years, the exchange of information among all scientists working in 
combustion synthesis is without the political barriers that existed until the early 1990s.  Every 2 
years, researchers have the opportunity to present their results at international SHS symposia.  
New close-cooperation agreements have been established between different universities and 
research institutes.  We hope that this trend will continue and new generations of scientists and 
engineers will contribute into the field of SHS freely and without any external constraints. 
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Appendix A.   Oral Presentations:  Part 1 

From the “International Conference on Historical Aspects of SHS in Different Countries,”  
22–27 October 2007, Chernogolovka, Moscow, Russia.  Historical perspective and contributions 
of U.S. Researchers into the Field of Combustion Synthesis (SHS):  Personal Reflections—  
1976–1996, James W. McCauley. 

                                                 
 The viewgraphs in this appendix appear in their original form, without editorial change. 
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• Introduction 

• Historical perspective in the U.S.: 1976 – 1996; McCauley

• Recent work in the U. S.: 1996 – present; Puszynski

OUTLINE

 
 
 

Schematic Representation of Various 
Exothermic Reactions

Focus of U.S. 
Program
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Related Technology

 
 
 

True Scope of Self-propagating High 
Temperature Synthesis - SHS

First stage at 
AMMRC

Second Stage at 
AMMRC/MTL

Coming to consensus on identifiable acronym for this technology: SHS

Second Stage 
with DARPA
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Generalized Overall History of SHS 
in U. S.: 1976 - 1989

Joey F. Crider, Self-propagating High Temperature Synthesis – A Soviet Method for Producing Ceramic 
Materials: 6th Annual Conference on Composites and Advanced Materials, Cocoa Beach, Fl., Jan. 1982 
(Cer. Eng. And Science Proceedings, V.3, No. 9-10, 1982).  

 
 

Short History: McCauley Perspective 

• Army Materials and Mechanics Research Center/ Materials 
Technology Laboratory: 1975-1989

• Thermal battery heat paper – Zr + air and Zr + BaCrO4 reactions

• SHS for processing ceramics – Ti + B and Ti + B4C 

• Initiation and management of a major DARPA program 

• Interactions with Japan and Russia begin

• McCauley works in Tokyo, Japan 1988 – interacts with all SHS groups

• Organizing several workshops and International symposia

• Alfred University: 1990 – 1996
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Thermal Battery Heat Paper

“Gasless” Reactions

Optimize Performance of Zr Powder Heat Paper in Thermal Batteries

• Focus on the Chemical and Physical Characteristics of 
Zr powder and their affect on burning characteristics

 
 
 

Zr Burn Time Relationships 

• Relation of burn time to Fisher Sub Sieve 
is clear (measure of size and surface area –
permeametry number) 

• No apparent relation to surface area

• Large surface area powders have more 
surface oxygen, which slows down burn 
rate

 



 43

Zr Powder Characterization Data

 
 
 

DARPA Advanced Materials Program
1984 -1986: ~ $1.7 M

• Overall contract manager: J. W. McCauley

• Program breakdown:

• Prime contractor: Lawrence Livermore National Laboratory

• Program manager: J. Birch Holt

• Focus: Combustion synthesis and plasma chemical synthesis

• Sub-contractors: 

• University of California, Davis, Ceramatec, Los Alamos 
National Laboratory and Rice University

• First major review in the U.S. of on-going work: 
“Materials Processing by Self-propagating High-temperature Synthesis (SHS)”; 
K.A. Gabriel, S.G. Wax and J.W. McCauley, eds., Proceedings of DARPA/Army 
SHS Symposium, 21-23 Oct. 1985, Daytona Beach, Fl. MTL SP 87-8.

 



 44

Focus of Symposium

• DARPA SHS program review: LLNL, UC Davis, LANL, Rice, Ceramatec, Ohio State, 

• Low pressure processes,

• Modeling and characterization techniques, 

• Synthesis techniques, 

• SHS surface related processes, 

• General materials processing.

 
 
 

Materials Technology Laboratory
Shift from Using By-products of SHS to Processing

Focus of Program

• Utilize reaction sintering concepts without pressure

• Importance of physical and chemical characteristics of 
powders

• Focus on phase equilibrium

• Detailed characterization of final sintered products

SHS Characteristics
• Liquid formation
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SHS as Reaction Sintering

• Requirements: 

• Removal of porosity arising from:

• Remnant powder packing, etc.

• Product density change from reactants

• Gas as reaction product

• Propagation/control of reaction

Dependence of Above on Presence and Characteristics of Liquid 
and Vapor Phases

• Equilibrium Factors:

• Phase equilibrium

• Energies of reaction

• Non-equilibrium factors (kinetic):

• Actual chemistry of reactants: bulk and spatial distribution

• Physical characteristics of reactants
 

 
 

Some Reaction Sintering Issues

• Chemical driving forces much higher than conventional sintering

• If gas forms most diffuse out

• Volume fractions of reactants and products change with time – density difference

• Kirkendall effects: porosity formation due to density change between reactants and 
products

• Wetting between liquids and solid phases becomes important

• Grain size reduction from reactants – nucleate new phases
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Relevant Phase Equilibrium 
Ti- B-C System

Rudy, 1969

Reactants: 

1.) Ti + B

2.) Ti + B + TiB2

3.) Ti + B4C  
 
 

Ti-B and Ti- B4C Binary Diagrams
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Reacted Samples in the Ti-B-C System

Some Results

• 68 – 85 wt.% Ti + B4C

• Resulting phases: TiB2, TiC, 
Ti3B4, TiB, C.

• Wt. loss and burn rate 
changes

• Ti and B4C starting powder 
critical  

 
 

Powder Chemical Characteristics

B4C Powder

B

Ti

B4C

C (a, c) B (a, c)

• B2O3

• C
• H2O
• CH4

• H2

• TiO2

• Fe

• Na

• S

• et al.

B2O3 + H2O 
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Powder Physical Characteristics

• Average particle size

• Particle size distribution

• Surface area and morphology

• Relative size of reactants

 
 
 

Ti Powder Characteristics
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Boron Carbide Characteristics

Chemical

• Phases: B4C, Ba, Bc, B2O3, H2O 
• Differential thermal analysis

Physical

• Surface areas: 0.76 – 4.81 m2/g
• Median particle size: 2.5 – 20 μm
• Particle size distribution: < 1 μm

 
 
 

Boron Characteristics

0.5824.9C
03.76E

1.471.6A (<38μm) 

1.470.9A 
(38-74 μm)

0.940.21W

Total 
Impurities

Wt % 
O

Lot

Lot A 0.9 % O Lot A 1.6 % O

Lot E 3.76 % O Lot C 24.9 % O
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B2O3 Gas Evolution from Boron 
Powder

 
 
 

SHS Groups in US – circa 1990

Current Status
No
No
No

No
No
?

No
?
?

Yes
?

Yes
No
Yes

No/yes
No
No
?

No
No
Yes
No
No
No
No
No
No

Yes
No
No  
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Related Processing Technology

Newkirk et al., “Preparation of LANXIDE™ Ceramic 
Matrix Composites, Cer. Eng. Proc., v. 8, 1987.

XD™ Process for Producing Metal 
Matrix Composites – Martin Marietta

 
 
 

Important International Activities
1988 - 1993

• 1988: Symposium on SHS; San Francisco, CA

• 1988: Formation of Japanese Research Association for Combustion Synthesis 
– Koizumi and Miyamoto

• 1988: McCauley assignment in Tokyo, Japan – major focus is SHS and FGM

• 1989: Kiser Research Inc. special meeting, Arlington, Va. “Soviet Advances in 
High Performance Ceramics using Solid Flame Technology”. 

• 1990: Tsukuba Science City, Japan

• 1991: First International Symposium on SHS Alma-Ata, Kazakhstan

• 1991: US-USSR SHS Workshop, Alfred University

• 1993: Second International Symposium on SHS, Honolulu, Hawaii

• 1993: Formation of “American Association of Combustion Synthesis” Munir
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Time Period During
Transition to Alfred University

• “An Historical and Technical Perspective on SHS”: J.W. 
McCauley, Ceram. Eng. Sci. Proceedings. 11, [9-10] 1137-1181, 
(1990).

• “Combustion Synthesis: A Historical Perspective”, V. Hlavacek, 
Cer. Bull., 70,[2] 240-243 (1991).

 
 
 

Modeling

Optimization for Materials Processing Requires 
a Unification of Approaches

Alfred Thrust
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• Focus on modeling and Functionally Graded Materials

• Interactions and formal agreement with NRIM, Japan (Kaieda)

• Formal agreement with  the Institute of Materials Science, School of

Mining and Metallurgy, Poland (Pampuch)

• Interactions with ISMAN (Merzhanov and Borovinskaya)

April 1991 Alfred Workshop 
ISMAN/Alfred Collaboration 

Agreement Signed October 1990

Alfred University: 1990 – 1996

 
 
 

US - USSR SHS Workshop, Alfred University

April 4-5, 1991 – McCauley’s home
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Summary of Alfred Work
1990 - 1996

• Institute for Self-Propagating High-temperature Synthesis (SHS) formed at Alfred: 
Professor Greg Stangle named Director. 

• PIs: Greg Stangle, Dick Spriggs and Jim McCauley

• Stangle: 16 B.S. students

M.S.:
•1995 - Boisvert, Scot M., Fabrication of dense MoSi2 and MoSi2 composites by combustion synthesis

• 1994- Huang, Dai, Combustion synthesis and fast-firing of nanocrystalline yttria-stabilized zirconia

• 1993- Niedzialek, Scott E., The fabrication of functionally gradient materials by the self propagating high-
temperature synthesis method

• 1993- Coy, Michael A., Development of a centrifugal-SHS process and analysis of its fabrication capabilities

Ph.D.

• 1996-He, Cheng,An investigation of mechanism and kinetics of combustion synthesis of materials

• 1994- Zhang, Yangsheng, A study of the combustion synthesis process for materials fabrication

• 31 publications

 
 
 

Focus of Alfred Research

• Ultra-fine powder synthesis: Zirconia, YIG, Barium hexaferrite

• Micro-mechanistic models: modes and mechanisms of ignition

• Micro-mechanistic model of combined combustion synthesis densification process

• Near net shaped alumina fiber- reinforced Ni3Al composites

• Niobium-carbon reactions

• Mo-Si reactions

• Centrifugal-SHS processes

• Functionally Graded Materials (FGM) 
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Micromechanistic Models and Nb-C System

• Development of quantitative micromechanistic models: theory and numerical simulation 
– Zhang and Stangle.

• microstructural details derived primarily from percolation concepts as applied to 
porous media; allows for processing-microstructure-property relationships

• fundamental understanding and precise control of the process depends strongly 
on the joint contributions of the rates of the various mass and energy redistribution 
processes that occur during the combustion synthesis process; a proper balance of 
each is required for self-propagating behavior. 

• Nb-C model system: using reaction couples of thin Nb foils or wire – He and Stangle. 

• both solid-solid and controlled amount of liquid formation

• no liquid phase – diffusion controlled mechanisms and products

• liquid formation – allows much larger fraction of the reactants to 
mix at greater rates

• CS/SHS not really “reactions” in the strict sense, but a sequence 
of chemical and physical processes: melting, dissolution, diffusion 
and nucleation and growth of the product phases.  

 
 
 

TiC – NiAl FGM; S. Niedzialek, G.C. Stangle and Y. Kaieda, 1992

Functionally Graded Materials (FGM) at Alfred
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Appendix B.   Oral Presentation:  Part 2 

From the “International Conference on Historical Aspects of SHS in Different Countries,”  
22–27 October 2007, Chernogolovka, Moscow, Russia.  Historical perspective and contributions 
of U.S. Researchers into the Field of Combustion Synthesis (SHS):  Personal Reflections—
recent work; Jan A. Pusznski. 

 

                                                 
 The viewgraphs in this appendix appear in their original form, without editorial change. 



 58

SHS - 40
Research Center RAN
Chernogolovka, Russia

22-24 October 2007

Historical Perspective and Contribution of U.S. 
Researchers into the Field of Combustion 

Synthesis (SHS)
PART 2: Recent Work

James W. McCauley, Army Research Laboratory, U.S.

and 

Jan A. Puszynski, South Dakota School of Mines and 
Technology, U.S.

 
 
 

CURENT R&D ACTIVITIES AT U.S. UNIVERSITIES

• University of California at Davis:  Professor Z. Munir
• Northwestern University:  Professor B. Matkowsky and V. Volpert
• University of Notre Dame:  Professor A. Mukasyan
• University of California at San Diego:  Professors Meyers and Olewsky
• Georgia Institute of Technology: Professor N. Thadani
• University of Houston:  Professor D. Luss and Dr. K. Martirosyan
• Purdue University: Professor A. Varma
• Colorado School of Mines:  Professor Moore
• S.D. School of Mines and Technology: Professor J. Puszynski
• University of Nebraska: Professor H. Viljoen
• University of Southern Mississippi: Professor J. Pojman
• Princeton University: Professor C. Law
• University of Illinois: Professor K. Brzezinski
• John Hopkins University: Professor T. Weih
• New Jersey Institute of Technology: Professor E. Drezin
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Professor Zuhair Munir

• Analysis of the origin of porosity in SHS products (1993). 

• The role of electric fields in SHS reactions: Modeling and experimental work (1995-1998).

• Separation of the thermal (Joule heat) from the intrinsic (electron wind effect) 
contributions of the field (current), work on electromigration has demonstrated field 
effect on point defect generation and mobility (2001).

• Recent work on the combined mechanical and field activation to synthesize dense (bulk) 
nano-ceramics and nano-composites in one step (2001-present).

• Use of field activation for simultaneous synthesis and consolidation of complex materials 
(Ti2SiC3 (1999), TiB2-WB2-CrB2 (2001), AlN-SiC (1996-2000).

• Use of field activation for microalloying (2003-2004).

• Use of field activation to prepare nanostructured functional oxides for fuel cell 
applications: Novel demonstration of power generation at room temperature by 
protonic conduction.

 
 
 

Professor Munir has collaborated with Professors: 
• Frederic Bernard, University of Burgundy, Dijon, France; 
• Manshi Ohyanagi, Ryukoku University, Seta, Japan; 
• Umberto Anselmi-Tamburini, University of Pavia, Italy; 
• Giacomo Cao, University of Cagliari, Italy; 
• Manfred Martin, University of Aachen, Germany; 
• Rainer Telle, University of Aachen, Germany; 
• In-Jin Shon, Chonbuk National University, Korea; 
• Myeong-Woo Cho, Inha University, Korea; 
• Roberto Tomasi, Sao Carlos Federal University, Brasil; 
• Qing-sen Meng Taiyuan University of Technology, China; 
• K. A. Khor, Nanyang Technological University, Singapore.; 
• Z. Y. Fu, Wuhan University of Technology, China; 
• Yu. Maksimov, Tomsk University, Russia.  

He has also ongoing collaboration with U.S. national laboratories, including collaboration 
with Dr. Alex Gash from Lawrence Livermore National Laboratory, USA and Dr. John 
Neal from Oak Ridge National Laboratory, USA.

Professor Zuhair Munir
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Mathematical Modeling of SHS Processes
(Matkowsky, Volpert, Hlavacek, Puszynski, Viljoen, 

Olewsky, Law, and Varma)

 
 
 

Mathematical Modeling of SHS Processes
(Matkowsky, Volpert, Hlavacek, Puszynski, Viljoen, 

Olewsky, Law, and Varma)
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Professor Puszynski
Si3N4 and SiC: Chemically-enhanced SHS
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Professor Puszynski: Simultaneous Combustion Synthesis 
and Densification of Nanocomposites

a) and b) TEM images of Al and Ni nanoreactants, c) 
reaction chamber, d) SEM image of nanosize nickel 
aluminide-alumina composite prepared by simultaneous 
combustion synthesis and densification, e) and f) SEM 
images of single-walled carbon nanotubes reinforced 
nickel aluminide-alumina nanocomposites.
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Professor Puszynski
NANOTHERMITE REACTIONS
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Professor Puszynski
Combustion Front Propagation

Both Tube Ends Open
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– Shock Consolidation
– Similar to pressing in 

a rigid die; 

– Impact Forging
– Again, similar to 

pressing in a rigid die
– Quasi-Isostatic 

Pressing (QIP)

0=rrε

zzrr σσ ≠

Professors M. Meyers and Olewsky

 
 
 

• As-reacted TiC 
Cermet

• Densified TiC 
Cermet (QIP)

Professors M. Meyers and Olewsky
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Professors M. Meyers and Olewsky

TiC-25%NiTiC TiC-NiTi

 
 
 

Professors Varma and Mukasyan

• Combustion synthesis of nanomaterials with different applications e.g. hydrogen   
production (combustion solution technique).

• Joining of carbon-carbon composites.

• Mechanism of heterogeneous combustion.  

• SHS in microgravity.

• Mathematical modeling. 
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Drs. Luss and Martirosyan

• Carbon combustion synthesis of oxides.
• Spontaneous magnetization during solid phase reaction.
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